Rule base and adaptive fuzzy operators cooperative learning of Mamdani fuzzy systems with multi-objective genetic algorithms
نویسندگان
چکیده
In this paper, we present an evolutionary multiobjective learning model achieving cooperation between the rule base and the adaptive fuzzy operators of the inference system in order to obtain simpler, more compact and still accurate linguistic fuzzy models by learning fuzzy inference adaptive operators together with rules. The multiobjective evolutionary algorithm proposed generates a set of fuzzy rule based systems with different trade-offs between interpretability and accuracy, allowing the designers to select the one that involves the most suitable balance for the desired application. We develop an experimental study testing our approach with some variants on nine real-world regression datasets finding the advantages of cooperative compared to sequential models, as well as multi-objective compared with single-objective models. The study is elaborated comparing different approaches by applying non-parametric statistical tests for pair-wise. Results confirm the usefulness of the proposed approach.
منابع مشابه
Rule Base and Inference System Cooperative Learning of Mamdani Fuzzy Systems with Multiobjective Genetic Algorithms
In this paper, we present an evolutionary multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler, more compact and still accurate linguistic fuzzy models by learning fuzzy inference operators together with Rule Base. The Multiobjective Evolutionary Algorithm proposed generates a set of Fuzzy Rule Based Systems with diff...
متن کاملLearning Concurrently Granularity, Membership Function Parameters and Rules of Mamdani Fuzzy Rule-based Systems
In this paper we tackle the issue of generating Mamdani fuzzy rule-based systems with optimal trade-offs between complexity and accuracy by using a multi-objective genetic algorithm, which concurrently learns rule base, granularity of the input and output partitions and membership function parameters. To this aim, we exploit a chromosome composed of three parts, which codify, respectively, the ...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملFinding the Optimal Path to Restoration Loads of Power Distribution Network by Hybrid GA-BCO Algorithms Under Fault and Fuzzy Objective Functions with Load Variations
In this paper proposes a fuzzy multi-objective hybrid Genetic and Bee colony optimization algorithm(GA-BCO) to find the optimal restoration of loads of power distribution network under fault.Restoration of distribution systems is a complex combinatorial optimization problem that should beefficiently restored in reasonable time. To improve the efficiency of restoration and facilitate theactivity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolutionary Intelligence
دوره 2 شماره
صفحات -
تاریخ انتشار 2009